3,788 research outputs found

    Seed particle formation for silicate dust condensation by SiO nucleation

    Full text link
    Clustering of the abundant SiO molecules has been discussed as a possible mechanism of seed particle formation for silicate dust in stellar outflows with an oxygen rich element mixture. Previous results indicated that condensation temperatures based on this mechanism are significant lower than what is really observed. This negative result strongly rests on experimental data on vapour pressure of SiO. New determinations show the older data to be seriously in error. Here we aim to check with improved data the possibility that SiO nucleation triggers the cosmic silicate dust formation. First we present results of our measurements of vapour pressure of solid SiO. Second, we use the improved vapour pressure data to re-calibrate existing experimental data on SiO nucleation from the literature. Third, we use the re-calibrated data on SiO nucleation in a simple model for dust-driven winds to determine the condensation temperature of silicate in stellar outflows from AGB stars. We show that onset of nucleation under circumstellar conditions commences at higher temperature than was previously found. Calculated condensation temperatures are still by about 100 K lower than observed ones, but this may be due to the greenhouse effect of silicate dust temperatures. The assumption that the onset of silicate dust formation in late-type M stars is triggered by cluster formation of SiO is compatible with dust condensation temperatures derived from IR observations.Comment: 11 pages, 11 figure

    Multiband superconductors close to a 3D-2D electronic topological transition

    Full text link
    Within the two-band model of superconductivity, we study the dependence of the critical temperature Tc and of the isotope exponent alpha in the proximity to an electronic topological transition (ETT). The ETT is associated with a 3D-2D crossover of the Fermi surface of one of the two bands: the sigma subband of the diborides. Our results agree with the observed dependence of Tc on Mg content in A_{1-x}Mg_xB_2 (A=Al or Sc), where an enhancement of Tc can be interpreted as due to the proximity to a "shape resonance". Moreover we have calculated a possible variation of the isotope effect on the superconducting critical temperature by tuning the chemical potential.Comment: J. Supercond., to appea

    Activation of MHD reconnection on ideal timescales

    Full text link
    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number SS, up to 10710^7. Results confirm that when the critical aspect ratio of S1/3S^{1/3} is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P=1P=1 in the viscous regime.Comment: Accepted for publication in Plasma Physics and Controlled Fusio

    Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different

    Get PDF
    The worldwide obesity epidemic continues unabated, adversely impacting upon global health and economies. People with severe obesity suffer the greatest adverse health consequences with reduced life expectancy. Currently, bariatric surgery is the most effective treatment for people with severe obesity, resulting in marked sustained weight loss, improved obesity-associated comorbidities and reduced mortality. Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), the most common bariatric procedures undertaken globally, engender weight loss and metabolic improvements by mechanisms other than restriction and malabsorption. It is now clear that a plethora of gastrointestinal (GI) tract-derived signals plays a critical role in energy and glucose regulation. SG and RYGB, which alter GI anatomy and nutrient flow, impact upon these GI signals ultimately leading to weight loss and metabolic improvements. However, whilst highly effective overall, at individual level, post-operative outcomes are highly variable, with a proportion of patients experiencing poor long-term weight loss outcome and gaining little health benefit. RYGB and SG are markedly different anatomically and thus differentially impact upon GI signalling and bodyweight regulation. Here, we review the mechanisms proposed to cause weight loss following RYGB and SG. We highlight similarities and differences between these two procedures with a focus on gut hormones, bile acids and gut microbiota. A greater understanding of these procedure-related mechanisms will allow surgical procedure choice to be tailored to the individual to maximise post-surgery health outcomes and will facilitate the discovery of non-surgical treatments for people with obesity

    The structure of trailing vortices generated by model rotor blades

    Get PDF
    Hot-wire anemometry to analyze the structure and geometry of rotary wing trailing vortices is studied. Tests cover a range of aspect ratios and blade twist. For all configurations, measured vortex strength correlates well with maximum blade-bound circulation. Measurements of wake geometry are in agreement with classical data for high-aspect ratios. The detailed vortex structure is similar to that found for fixed wings and consists of four well defined regions--a viscous core, a turbulent mixing region, a merging region, and an inviscid outer region. A single set of empirical formulas for the entire set of test data is described

    Deamidation at Asparagine and Glutamine As a Major Modification upon Deterioration/Aging of Proteinaceous Binders in MuralPaintings

    Get PDF
    Proteomic strategies are herein proved to be a complementary approach to the well established amino acid composition analysis for the characterization of the aging and deterioration phenomena occurring to proteinaceous materials in works-of-art. Amino acid analyses on several samples demonstrated that proteins in the frescoes from the Camposanto Monumentale in Pisa are deteriorated as revealed by the decrease in Met, Lys, and Tyr content and by the presence in all the samples of amino malonic acid as a result of Ser, Phe, and Cys oxidation. Proteomic analysis identified deamidation at Asn and Gln as a further major event occurred. This work paves the way to the exploitation of proteomic strategies for the investigation of the molecular effects of aging and deterioration in historical objects. Results show that proteomic searches for deamidation by liquid chromatography-tandem mass spectrometry (LC-MS/MS) could constitute a routine analysis for paintings or any artistic and historic objects where proteins are present. Peptides that can be used as molecular markers when casein is present were identified
    • …
    corecore